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Abstract 

Genetic  Algorithms  (GA)  have  been  a  branch  of  Artificial 

Intelligence since the mid 1970's. Since then, many different kinds of 

GAs have been invented; however, most of these genetic algorithms 

are a crude representation of the evolutionary mechanisms from which 

they  model.  The  Genetic  Wavelet  Algorithm  is  an  Evolutionary 

Algorithm  developed  by  Jeffery  Freeman  of  Syncleus,  Inc.  that 

attempts to more accurately model the evolution than the traditional 

GAs.  The  purpose  of  this  lecture  is  formally  to  define  the  Genetic 

Wavelet  Algorithm and  describe  how what  is  required  for  it  to  be 

implemented.  In  addition,  the  performance  of  the  Genetic  Wavelet 

Algorithm will be compared to the classic Simple Genetic Algorithm on 

difficult instances of NP-Hard problems. 



1. Evolutionary Algorithms

1.1 Background

  Evolutionary Computing is  the  branch of  AI  which consists  of 

optimization  problem  solving  techniques  that  originate  from  the 

abstraction  of  evolutionary  principles  found  in  biology.  The  part  of 

Evolutionary  Computing  that  the  Genetic  Wavelet  Algorithm  stems 

from is Evolution Algorithms; the group of algorithms that are deemed 

Evolutionary  Algorithms  (EAs)  are  biologically  inspired  and  use 

simulated  evolution  to  drive  a  search  process.  EAs  use  simulated

genetics to solve problems.   

    Artificial  intelligence (AI)  "was  proposed  for  the  first  time  by 

John  McCarthy in  1956,  when  organizing  a  conference  at  the 

Dartmouth College on intelligent machines."[6] The first Evolutionary 

Algorithms  were  seen  soon  after  the  birth  of  the  field  of  Artificial 

Intelligence. The first formal research on Evolutionary Algorithms was 

introduced in Lawrence J. Fogel's Phd dissertation in 1964. A few years 

later  in  1966,  Fogel  along  with  Alvin  Owens  and  Michael  Walsh 
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published a book on Evolutionary Programming. The foundation of EAs 

was  expanded  in  1973  by  Ingro  Rechenberg  in  his  paper  about 

evolutionary strategies.[3] In 1975, John Holland published the first 

literature on what he called Genetic Algorithms. Since then the field of 

Evolutionary  Computation  has  expanded  to  a  wide  variety  of 

applications, all stemming from the biological concept of evolution. 

    In order to better understand the fundamentals of EAs, one must 

understand  the  biological  concepts  driving  them.  In  1866,  Gregor 

Mendel was the first to formally describe genes and heredity  in what 

is called transmission genetics. After  breeding experiments with the 

plant  Pisum  sativum,  he  found  that  some  observable  traits  were 

controlled  by  what  we  now  call  genes,  which  were  inherited 

independently  from  other  genes.  He  also  discovered  that  adult 

organisms carry two copies of each gene, one copy is inherited from 

each parent. One of these sets of genes is known as a chromatid, and 

both  are  referred  to  as  the  individual's  chromosome.  Modern 

understanding of genetics tell us that an organism's chromosome is 

stored in its Deoxyribonucleic acid (DNA), and it holds all the genetic 

information of the organism. DNA is a microscopic polymer made out 

of repeating pairs of nucleotides - the basic building blocks for DNA. A 
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gene  consists of  multiple pairs of nucleotides, and corresponds one or 

more regions of the genome. An allele is an "alternate form of a gene." 

So when Mendel first observed the different colors of pods of Pisum 

sativum plant, the diversity he was observing was caused by different 

alleles. A visible characteristic of an organism, or phenotype, could be 

caused  by  multiple  pairs  of  alleles.  Because  organisms  have  two 

complete sets of genes, the phenotype  expressed by a specific gene 

results from the allele on each side of the chromosome. When these 

two allele are the same, the gene is homozygous. When the alleles are 

different,  the  gene  is  heterozygous.  Sometimes  in  heterozygous 

alleles, one allele is dominant and the other  is recessive, causing the 

phenotype to  be  dictated  by  the  dominant  allele.  For  other  genes, 

heterozygous alleles causes a phenotype that shares the phenotypic 

properties of both alleles.[14]  

    The other largely influential biological idea that EAs abstract is 

natural  selection.  The  idea  of  natural  selection  was  introduced  by 

Charles Darwin in 1859:  “Owing to this struggle for life, variations, 

however slight and from whatever cause proceeding, if they be in any 

degree  profitable  to  the  individuals  of  a  species,  in  their  infinitely 

complex  relations  to  other  organic  beings  and  to  their  physical 
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conditions of life, will tend to the preservation of such individuals, and 

will  generally be inherited by the offspring. The offspring, also, will 

thus have a better chance of surviving, for, of the many individuals of 

any  species  which  are  periodically  born,  but  a  small  number  can 

survive. I have called this principle, by which each slight variation, if 

useful,  is  preserved,  by  the  term  Natural  Selection.”[15]  Darwin 

recognized the profound ability nature has to eliminate inferior species 

and  promote  the  more  fit  ones.  This  property  of  life  has  yielded 

successful results (living species after an estimated billion years of the 

existence of life), and it is that same property that was abstracted and

simulated in EAs. 

Darwin's  observations can be summarized by three principles: 

"There  is  a  population  of  individuals  with  different  properties  and 

abilities. An upper limit for the number of individuals in a population 

exists.  Nature creates new individuals with similar properties to the 

existing individuals. Promising individuals are selected more often for 

reproduction by natural selection."[3] There is one thing that Darwin 

did  not  quite  accentuate  here,  and  that  is  the  role  of  mutation. 

Mutation  is  when  the  genetic  information  of  the  offspring  is  not 

identical to either of the originating parents. Mutation occurs for many 

reasons,  and  can  be  both  harmful  and  helpful  to  the  offspring 
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depending on where in the DNA the mutation occurs. When a mutation 

is especially helpful to a species, it becomes a "promising individual," 

therefore  the  trait  will  be  propagated  to  future  generations. 

Essentially, mutation is responsible for new diversities in a population, 

making it an essential part of EAs.

 1.2 Properties of EAs 

    Evolutionary Algorithms come in many different varieties, but in 

order to be classified as an EA, an algorithm must have certain basic 

properties.  According  to  the  Handbook  of  Evolutionary  Algorithms, 

there are three integral properties shared amongst all EAs: 

  1. Population:  "Evolutionary  algorithms  utilize  the 

collective learning process of a population of individuals."[1] The 

population is essentially a group of possible solutions generated 

by the algorithm - all of which are evaluated and then the best 

are chosen. 

    2.  Reproduction and Mutation: "Descendants of individuals 

are  generated  by  randomized  process  intended  to  model 
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mutation and recombination."[1]  Mutation  happens  when  an 

individual erroneously self-replicates; this is done purposely and 

 is  important  for  ensuring  diversity  of  individuals  amongst  a 

population. Recombination is the reproduction step, two or more 

individuals are combined in order to distribute their  individual 

information.  The  recombination   step  is  usually  how  new 

individuals are introduced into the population. 

    3.  Evaluation: "By means of evaluating individuals in their 

environment,  a  measure  of  quality  or  fitness  value  can  be 

assigned to individuals."[1] This measurement is usually done by 

a  fitness  function;  from  an  evolutionary  standpoint,  this 

represents the environment. A fitness function is the part of the 

algorithm  that  drives  the  algorithm.  Without  a  form  of 

evaluation,  the  differences  between individuals  would  be 

indistinguishable.

In  short,  an  EA  is  an  algorithm  that  searches  through  a 

population of individuals. Individuals are evaluated, mutated and then 

recombined.  The  process  is  simple,  but  fine  details  go  into  any 

implementation of an EA. EAs are a powerful tool in computer science, 

but  traditionally  have  their  limits.  Some  examples  of  EAs  include: 
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Genetic  Algorithms,  Genetic  Programming,  and  Evolutionary 

Programming.  The Genetic  Wavelet  Algorithm (GWA)  applies  as  an 

Evolutionary algorithm, because it also follows these three paradigms.

The process for Evolutionary algorithms is diagrammed below. 

The population is initialized, mutation occurs (most likely not in the 

first iteration), each individual in the population's fitness is evaluated, 

then crossover and repeat the cycle until stopping conditions are met. 

The cycle of steps is simplistic, however it is not trivial.    

Fig. 1.1 – Evolutionary Algorithm Flowchart [4]
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1.3 EA Uses and Limitations

There  are  many  questions  a  developer  should  ask  when 

implementing  an  EA;  for  instance:  how  should  one  represent  the 

individuals of the population? What should the population size be? How 

should  the  population  be  updated  after  selection  is  applied?  How 

should mutation affect an individual? When should the algorithm stop? 

The answers to these questions is different for certain type of EAs, and 

is also dependent on the type of problem being solved.

Before  addressing  the  above  questions  concerning 

implementation details of EAs, there is a simpler question that needs 

to be answered: Why Evolutionary Algorithms? EAs are essentially a 

form of search. So, what sets it apart from other approaches when 

considering  how  to  solve  a  problem?  Some  advantages  include: 

"simplicity of approach, its robust response to changing circumstances, 

and its  flexibility."[4]  Holland argued that  the  power  of  EAs  (more 

specifically  GAs)  comes  from  their  ability  to  solve  problems  in  an 

"implicitly parallel fashion."[16] Part of the flexibility of EAs is the wide 

variety of problems that can be solved. If a problem can be formulated 

as a functional optimization problem, then it can be solved by EAs. In 

addition, EAs have the ability to solve problems that have not been 
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solved.  "Fogel  (1995)  declaired  artificial  intelligence  as  'They  solve 

problems,  but  they  do  not  solve  the  problem  of  how  to  solve 

problems.'  In contrast,  evolutionary computation provides a method 

for solving the problem of how to solve problems."[4] 

EAs are not the answer to every problem, because  they have 

some problems of their own. Some optimization problems lead EAs to 

false solutions, when the algorithm finds a locally optimal solution that 

meets the stopping criteria. Locally optimal solutions represent roots 

(local maximum or minimum points in the search space), and to an 

EA, "one root is as good as another."[5] Highly nonlinear functions are 

also difficult for EAs to optimize, partly due to a greater occurrence of 

locally  optimal  solutions.  "Typical  approaches  to  highly  nonlinear 

problems  involve  either  linearizing  the  problem in  a  very  confined 

region or restricting the optimization to a small region. In short, we 

cheat."[5] Another limiting factor of EAs is the representation of an 

individual's genome. For example, If it is chosen to be a fixed length, 

then that is a limiting factor for the solution - if the optimum solution 

does not fall within the representation's range of solutions, then the 

optimal  solution  will  not  be  found.  Another  disadvantage  of  EAs  is 

setting one up to solve a problem. A great amount of understanding of 
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a problem is required to know how to represent a solution, tests its 

fitness and have an effective termination condition.[10]

This paper approaches the topic of Evolutionary Algorithms first 

by providing an understanding of existing genetic algorithms and then 

relating the paradigms found in GAs to the formal definition of the 

Genetic Wavelet Algorithm.   
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2. Classic Genetic Algorithms 

“An algorithm is a series of steps for solving a problem. A 

genetic algorithm is a problem solving method that uses genetics as its 

model of problem solving."[4]

 2.1 Introduction to the Classic GA

Genetic Algorithms (GAs) are a common example of evolutionary 

algorithms. There are many different variations of GAs. A classic or 

simple GA represents the solution with a fixed length string, usually a 

bit string. GAs use recombination and mutation to generate the next 

iteration of a population.  "The objective function or fitness function 

f(s) plays the role of the environment; each individual s is evaluated 

according to its fitness. In this way a new population (iteration t+1) is 

formed by selection of the better individuals of the former population, 

as  they  will  form  a  new  solution  by  means  of  applying  selection 

procedure and crossover and mutation operators. It should be noted 

that  diversity  of  individuals  is  required  to  find  good  solutions  with 

GA."[2] The steps of simple GA are outlined below. 
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Figure 2.1 – Genetic Algorithm Flowchart [5]

Above is a flowchart similar to the example given for EAs. In this 

flow chart,  the generic  steps for EAs are expanded and detailed to 

show the more specific process of a simple GA. The first step is the 

initialization of the problem's fitness function, which is referred to as 

cost in the flowchart because it applies to a minimization problem. An 

initial population is generated (usually randomly). Next, the algorithm 

simulates  generations  of  individuals  by  using  the  genetic  operators 

(crossover  and  mutation)  until  the  stopping  criteria  is  met.[5]  The 

logical steps for GAs are a little less simplistic than in EAs and are not 

defined well enough in the diagram above.
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Before the algorithm can start, the encoding of the chromosome 

has to be chosen. The encoding will be a fixed length string, therefore 

any possible solution to the problem has to be able to be encoded in 

the chromosome. That means that the scope of the problem (or at 

least  the  desired  solution  space)  has  to  be  defined,  and  the 

chromosome has to have the capacity to represent it.[4]

     Next, the fitness function is defined. The fitness function needs 

to  enforce  all  the  constraints  and  objectives  of  the  problem.  Any 

constraint or objective "can be handled as weighted components of the 

fitness  function."[4]  Therefore,  if  a  particular  individual  violates  a 

constraint then the fitness value should decrease, and if it satisfies an 

objective  then  the  fitness  value  should  increase.  The  amount  of 

increase/decrease  is  dependent  on  the  weight  of  the  constraint  or 

objective.  The  weight  signifies  the  importance  of  each  constraint 

relative to another constraint.

After the parameters (encoding and the fitness function) of the 

GA are set  up,  an initial  population is  created.  The population size 

should be large enough to ensure diversity amongst individuals, and is 

also dependent on the nature of the problem. An initial population with 

the  greatest  diversity  amongst  individuals  is  most  beneficial  for 
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avoiding locally optimal solutions and convergence. In classic GAs, the 

initial  population  is  usually  created  randomly.  Creating  individuals 

randomly will provide a enough diversity in larger populations, but can 

potentially  initialize  very  similar  individuals,  especially  in  smaller 

population sizes.[4]

The step of decoding the chromosome breaks down the genome 

representation  into  parts  that  can  be used  by the  fitness  function. 

Usually this involves breaking down the chromosome into alleles, each 

of which represents a piece of the solution to be tested by the fitness 

function.[5]  It  is  the  sum  of  these  components  which  dictates  a 

individual's fitness. Each individual is tested, and a group is chosen to 

breed the next generation.

      The  selection  of  which  individual  mates  with  another  can  be 

decided in  many ways.  The roulette  wheel  is  a  popular  method  in 

which individuals are weighted by their fitness and randomly chosen.

[4] In this case, ones with higher fitness have a higher probability of 

getting  chosen.  Another  method  is  to  mate  the  most  genetically 

dissimilar individuals. This promotes diversity and convergence. This is 

especially easy when using bit strings as representation.
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2.2 Mating and Crossover

Mating is the step of a GA in which the cross over operator is 

applied to the selected mates to form a new individual. This step is 

essentially concatenating substrings - one from each mate, the point 

at which the string is split is called the crossover point. The placement 

of the crossover point is dependent on how alleles are represented in 

the  chromosome string[4].  Taking  parts  from each  parents  string 

representation and putting them together creates a new individual, but 

how should these new individuals be put into the population? The new 

generation could replace the old one completely, or some of the best 

performing individuals could be kept in the population with the new 

generation. Poor performing individuals should be removed from the 

population. If the older generation is entirely replaced by the new one, 

the algorithm runs the risk of backward progress (the new generation 

performing worse than the old one). Below is an example of crossover, 

bit  strings a and b combine to create the two bit  strings c and d. 

Notice that this is very unlike the way genetic information is passed to 

offspring in the biological context.
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Fig. 2.2 – Crossover example [10]

    

Every GA has a mutation factor or mutation rate, which is just a 

number  that  represents  how  large  of  a  portion  of  the  genome  is 

mutated  for  each  individual.  When  mutation  occurs, an  individual 

becomes more or less fit. The higher the mutation factor is, the less 

powerful the crossover step is. However, if the mutation factor is low 

(e.g. 1 bit in a bit string of length 1,000,000,000) then the population 

will take more generations to generate diversity that does not already 

exist  in  the  population.[10]  Mutation  affects  the  chromosome 

randomly; how  it is  applied is  dependent  upon how the genome is 

represented. For instance when using a bit string encoding,  bits are 

flipped,  but  when using integers  or  real  values  mutation  takes  the 

form of addition or subtraction.
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The  steps  of  evaluation,  recombination  and  mutation  are 

performed until some stopping criteria is met. In genetic algorithms 

the stopping criteria is convergence, meaning that the population has 

converged towards a single solution or solution set.[4] Sometimes the 

problem is  such that  if  an individual  reaches  a  certain  fitness,  the 

answer is found. Convergence is  measured by the most fit individuals 

in consecutive generations. If the most fit individual is not improving 

over many consecutive generations, then the algorithm has come to a 

point of convergence. Convergence does not mean that  the solution 

has been found, but that a solution has been found. The solution could 

be found to be locally optimal, in which case another constraint would 

need to be added to the fitness function.

How  does  one  encode  diversity  into  these  algorithms?  Not 

diversity amongst its population's individuals' chromosomes, but the 

diversity that can be found by comparing a flea to a blue whale. It is 

not  easy,  GAs  chromosome  representation  is  inherently  discrete, 

because they are fixed length strings. Fixed length means a predefined 

minimum and maximum, making the scope of the individuals limited - 

falling short of mimicking biological  evolution's ability to adapt new 

unseen traits in response to an environment.
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3. Chromosome Representation for GAs 

3.1 Importance of representation

"The coding of the variables in[binary] string structures make 

the  search  space  discrete  for  GA  search.  Therefore,  in  solving  a 

continuous search space problem, GAs transform the problem into a 

discrete programming problem. Although the optimal solutions of the 

original  continuous  search  space  problem and  the  derived  discrete 

search space problem may be marginally different (with large string 

lengths),  the  obtained  solutions  are  usually  acceptable  in  most 

practical search and optimization problems. Moreover since GAs work 

with a discrete search space they can be conveniently used to solve 

discrete  programming problems,  which are  usually  difficult  to  solve 

using  traditional  methods."  GAs are  diverse  and  capable  of  solving 

difficult  problems  that  non-evolutionary  search  algorithms  have 

difficulty solving. Encoding the solution in bit strings has its limits. This 

limit has been recognized by computer scientists, and other techniques 

of representation have been developed for removing some of these 

limitations. 
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The  way  a  GA  represents  an  individual's  chromosome  is 

important for understanding its limitations and application to classes of 

problems.  On some level,  any chromosome is  represented by a bit 

string,  because that is  how the computer  understands it;  however, 

what is important is how alleles are represented, because they are the 

smallest logical element of a chromosome in GAs.

3.2 Approaches to chromosome representation

Heinz Muhlenbein says that GAs can be broken down into three 

general  approaches  to  chromosome  representation:  phenotypic, 

genotypic, and statistical.[2] Phenotypical approach is more concerned 

with  the  actual  observable  behavior  of  an  object  than  its  specific 

genes. An example of a phenotype would be the color of someone's 

eye  -  there  are  many  genes  that  go  into  affecting  this,  but  it  is 

observed as a single characteristic. Phenotypic approaches  correlate 

the chromosome representation directly with a phenotype, instead of 

using genotype to phenotype mapping. An example of this could be a 

bit  string,  in  which  each  bit  corresponds  to  whether  or  not  the 

individual  possesses  a  specific  trait.  One  benefit  of  this  is  for 

abstracting  more  advanced  behavior  in  individuals,  however  it  is 

further away from the capabilities of genetic representation found in 
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nature.

"If a phenotypic property of an individual, like its hair color or 

eye  size  is  determined  by  one  or  more  alleles,  then  these  alleles 

together  are  denoted  to  be  a  gene.  A  gene  is  a  region  on  a 

chromosome  that  must  be  interpreted  together  and  which  is 

responsible  for  a  specific  phenotypic  property."[3]  The  genotypic 

approach is almost directly opposite of the phenotypic approach. In 

genotypic chromosome representation, the bit string corresponds to an 

individuals exact genetic makeup. The genotypic approach requires a 

genotype to phenotype map, which takes a substring of the genome 

(representing an allele) and maps it to an observable phenotype. This 

is  a  representation  more  accurate  to  what  actually  happens  in 

biology;  a being's phenotypes are influenced by its genotype and the 

environment. Many components of a being's genotype may make up 

one visible phenotype. In biology, these components are not usually 

contiguous, but are dispersed about the genome; however in GAs, the 

substring is usually contiguous.

The  statistical  approach,  unlike  the  others,  takes  into 

consideration  the  whole  chromosome  of  each  of  the  individual's 
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parents. For each allele in each parents' chromosome representation, 

the  gene  that  the  offspring  will  have  is  determined  statistically 

depending on the values of the alleles. This could be implemented as 

some alleles being dominant or recessive, or the resulting could be a 

combination  of  both  alleles  -  it  all  depends  on  the  problem being 

implemented.

3.3 Types of Representations

Below is a table summarizing common representation types for 

chromosome  encoding  in  GAs.  Gray  coding  and  unary  coding  are 

mentioned in reference to binary strings and are explained below the 

table. 

25



Fig. 3.1 – Table of chromosome representation.
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Sometimes a problem occurs when using binary strings in GA 

optimization  problems:  the  "Hamming  Cliff."  The  Hamming  Cliff 

problem occurs when two parents have bit strings that are dissimilar, 

but  close  in  value.[1]  Take  the  bit  strings  "10000000"  and 

"01111111", their decimal values are 128 and 127 respectively, which 

is one digit away. However, their bit strings share no common values. 

A real world example of this would be if there were two nearly identical 

people standing next to each other that didn't have any shared DNA. It 

would not be a problem if it weren't  for the offspring these strings 

would produce. For instance, say that the crossover point were to be 

after  the  third  digit.  Parents  with  those  bit  strings  would  produce 

offspring  that  were  represented  by  the  bit  strings  "10011111"  and 

"01100000."  The  decimal  value  of  these  strings  are  159  and  96 

respectively.  The parents  are  well  fit  individuals –  we  assume this 

because they are chosen to be mated; because their values are close, 

it can also be assumed that they are near a point of convergence. The 

resulting offspring have decimal values very far  from their  parents, 

therefore  delaying  convergence.  One solution  to  the  Hamming Cliff 

problem is to use gray coding for bit strings. Gray coding ensures that 

consecutive numbers have at most one different bit. With gray coding, 

the  same  parents  could  be  represented  by  the  bit 
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strings "11000000"(128)  and  "01000000"(127).  With  the  same 

crossover  point,  they  would  produce  two  offspring  identical  to 

themselves.[5]

Another solution to the hamming cliff problem is unary coding. 

Unary coding is a simple alternative to standard bit strings; an integer 

n is represented by a bit string with n 1's  followed by a 0. The length 

of a unary coded string is directly related to decimal value of what it 

represents. Therefore the number three would be represented by the 

bit string "1110". This might not work well with a fixed length string, 

because every bit string would have to be as long as the highest value.

A Schema is a way of representing potential individuals that use 

bit  string  chromosome  representation.  Schemata  are  strings  that 

consist of 1, 0 and a wild card character. Take for example the schema 

"1**10*1", "*" is the wild card character in this instance. The number 

of non wildcard characters in the dictates the order of the schemata, 

for the example given the order would be four. A powerful part of of 

GAs  is  the  ability  to  predict  the  number  of  copies  of  a  particular 

schema  in  the  next  generation  of  a  population.  After  many 

generations, well  fit  schemata that have been prevalent throughout 

many  generations  are  deemed  as  building  blocks.  After  identifying 
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these  building  blocks,  the  schemata  can  be  combined  through 

crossover to get a more fit schemata. Lower order schemata are more 

likely to have high fitness, so the building blocks start out small, but 

with the use of recombination they create larger building blocks which 

speed up convergence.[4]

Variable length representation is not used in classical GAs. 

Sometimes  variable  length  encoding  is  useful  for  certain  problem 

representations. For example, if the problem solution were to be an 

unweighted  graph  that  is  represented  by  an  adjacency  matrix.  A 

variable length solution would represent a graph with any number of 

nodes and their edges. But how would one go about recombining these 

adjacency lists so that they create valid structures and even if they do 

create valid structures, are they closer to a convergence point? One 

way could be to ignore invalid structures and let  competition weed 

them out. This strategy works as long as the fitness function has a 

relatively  few number of  constraints  to test,  but if  there  are many 

highly coupled constraints the existence of invalid children just works 

to slow the algorithm down. Richard Dawkins thought of a different 

way of representing complex problems in GAs - biomorphs. "Taking its 

inspiration  from  nature,  this  approach  focuses  on  genotypic 
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representations that represent  the  plans  for  building  complex 

phenotypic structures through a process of morphogenesis."[7] In his 

book - The Blind Watchmaker - Dawkins describes "biomorphs" as  a 

way of representing the behavior of a complex object (instead of the 

object itself). Genes dictate some sort of behavior, like development, 

instead of traits like height. Instead, the height of an object would be 

determined by the gene that controlled development.[17]
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4. Other Types of Genetic Algorithms

 4.1 Adaptive Genetic Algorithms

          Adaptive Genetic Algorithms (AGA) are GAs that adapt their 

parameters while running. Such parameters may include population 

size, crossover probability or mutation probability. The algorithm is 

responsive to how much the population improves, for instance if it is 

not improving much, then the mutation rate may go up.[4] The flow 

chart for this would look almost identical to that of the GA, with the 

addition of one step - applying the heuristic for regulating the GA 

parameters. This happens after the population is evaluated, at the end 

of the GA loop.

      By evolving the parameters that are kept constant in traditional 

GAs, AGAs are trying to overcome some of the problems inherent to 

GAs. The first of which is locally optimal solutions. If the GA is 

converging upon a locally optimal solution, the growth rate of 

population fitness starts to approach zero. When this happens, the GA 

will adapt by increasing the mutation factor. This will increase diversity 

in the next generation, which will provide the GA with new individuals 

that are not stuck on local optima.
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4.2 Fast Messy Genetic Algorithms

    Fast Messy Genetic Algorithms (fmGA) is a type of GA that uses 

variable  length  binary  strings  as  encoding.  The principal  feature  of 

fmGAs is their use of building blocks "to explicitly manipulate building 

blocks (BBs) of genetic material in order to obtain good solutions and 

potentially  the  global  optimum."[4]  The  fmGA  has  three  stages: 

initialization, a building block filter phase, and the juxtaposition phase. 

The  parameter  of  the  length  of  the  building  blocks  is  given  to 

compensate for the variable length strings. Initialization starts with a 

population sizing equation that finds a size large enough to overcome 

the noise caused by the building block filtering phase. Once population 

size  is  established,  a  population  is  randomly  generated  and  their 

fitness  is  evaluated.  Members  of  the  population  are  then  used  to 

derive a building block that is the desired length. This is accomplished 

by a building block filtering schedule, which constitutes the building 

block  filtering  phase.  In  this  phase,  a  certain  number  of  bits  are 

randomly deleted from each member of the population. This removal 

of bits is alternated with a tournament-style selection so that only the 

fittest building blocks get selected. The building block filter phase is 

completed when every member of the population has the same length 

as  specified  in  the  problem  parameters.  In  the  next  phase,  the 
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juxtaposition phase, the best building blocks are randomly chosen and 

cross over is  applied - the crossover point is  chosen based upon a 

probability  distribution.  This  step  creates  individuals  whose  strings 

may or may not be larger than the specified building block size, these 

individuals make up the next generation. These phases are repeated 

until convergence or finishing criteria are met.[4]

4.3 Independent Sampling Genetic Algorithm

    Another  variation  on  the  classic  genetic  algorithm  is  the 

Independent Sampling Genetic Algorithm (ISGA). The ISGA has two 

phases: the independent sampling phase and the breeding phase. "In 

the independent sampling phase, a core scheme, called Building Block 

Detecting Strategy  (BBDS),  to  extract  relevant  building  block 

information  of  a  fitness  landscape  is  designed.  In  this  way,  an 

individual  is  able  to  sequentially  construct  more  highly  fit  partial 

solutions."[4] The breeding phase employs a similar technique to one 

described previously in this paper. Essentially the individuals choose 

their mates. This is done by finding a mate with a similar fitness that is 

genetically dissimilar from itself. This algorithm uses a population and 

a  fitness  function,  but  only  for  the  purpose  of  extracting  building 

blocks. These building blocks are combined using an effective strategy 
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for convergence. This algorithm is powerful for problems with "difficult 

landscapes."[4]  This  means  that  problems  that  have  many  local 

optima,  will  be  overcome  by  the  breeding  of  dissimilar  pairs;  it 

promotes diversity.
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5. Genetic Programming

5.1 Background

Genetic  Programming  (GP)  is  a  specific  application  of  GAs. 

Instead of a bit string being evolved, a computer program is evolved. 

It  is  evolved  using  the  operators:  mutation,  crossover,  and 

"architecture-altering operations patterned after gene duplication and 

gene deletion in nature."[4] GP was first introduced by John Koza in 

his book, Genetic Programming: On the Programming of Computers by 

Means of Natural Selection, published in 1992. GP stems from and is 

similar to GAs, however has some important differences. Instead of 

evolving bit strings, GP evolves tree structures that represent a natural 

grammar parsing of the program's source code. In addition, GAs use 

fixed length Strings, while GP needs to use trees which have variable 

lengths.  Instead  of  the  search  space  being  defined  by  the  fitness 

function, GP always searches for a solution in program space, or the 

set  of  all  programs  that  can  be  written  by  a  language's  formal 

grammar. There is no formal logic required in the search, and there 
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does not need to be an explicit  knowledge base in order to find a 

solution.  In addition, there is  not a risk of  converging onto a local 

maximum. But how exactly does GP work?

5.2 Genetic Programming Process

It starts by initializing a population of tree structures. The tree 

structures in GP are organized such that all leafs are terminals (values 

or  variables)  and  internal  nodes  represent  functions.  GP  is 

implemented with a maximum tree height to ensure that programs do 

not  become  overly  complex.  There  are  two  different  methods  for 

initializing trees, "called full and grow."[18] Grow starts with a function 

node at its root, and grows it by a single random node - terminal or 

function - until all the leaves are terminals. Full generates only random 

functions  until  the  next  node  to  be  generated  is  at  the  maximum 

height, then it generates random terminals. This results in a tree that 

is full size.[18] Combining these two forms of tree creation provides an 

initial population of many different sizes.

    After  the  population is  created,  individuals  are  evaluated  and 

used  for  the  creation  of  the  next  generation  of  programs.  One 

difference  between  GP  and  GAs  is  that  GP  keeps  some  inferior 

programs, due to the possibilty that these programs could evolve into 
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a more optimal solution. Because GP keeps a population, these inferior 

programs do not interfere with better performing ones. GP performs 

crossover similarly to the way GAs do, by using a crossover  point. 

Instead of a place in a string, this is usually an edge in the tree. Two 

parents produce two offspring, each of which contain complementary 

parts of the parents. The process is diagrammed below, A and B are 

the parents that crossover to create children C and D.
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Fig. 5.1 – Genetic programming crossover example.

Evaluating the programs created by the process of GP can be 

difficult. An implementation of GP needs to have a fitness function that 

is able to distinguish between the hopeful solutions and the ones that 

need to be weeded out. Programs may be generated that cannot be 

compiled. "We can think of this as a form of infant mortality, in the 

sense that  programs that  are  not  able  to  be  successfully  compiled 

never get a chance to be executed."[7] Along with programs that are 

not executable, some programs will have parts of their code that do 

nothing to promote their fitness. "This phenomenon has been dubbed 

'bloat'  in  the  evolutionary  computation  community  and  appears  to 

have  rather  similar  features  to  biological  systems."[7]  Bloat  in 

individuals  has  its  own purpose -  the  bloat  part  could  be  modified 

through crossover or mutation, and become something that makes the 

individual more fit without affecting the parts that made it fit in the 

first place.

The  end  conditions  are  met  when  the  program  produces  a 

certain  output  or  when  a  convergence  point  has  been  found.  In  a 

properly  configured  GP  set  up,  convergence  means  that  GP  either 

found  the  answer  to  the  problem,  or  that  the  problem cannot  be 
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solved with that maximum length program. The important part of GP is 

evolving a set of instructions. Biomorphs had a similar theme in its 

implementation.
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6. Evaluation of Evolutionary Algorithms 

When evaluating any type of EA, specifically GAs, it is necessary 

to  judge  the  problem  which  the  algorithm  is  attempting  to  solve. 

"when using specific representations some problems become easier, 

whereas  other  problems become more  difficult  to  solve  for[Genetic 

Evolutionary Algorithms]."[3]  Therefore  evaluation should  start  with 

judging the problem. If the EA is using a different representation than 

the easiest representation for the problem, then it is a sign to change 

the  chromosome  representation.  A  few  widely  used  methods  for 

measuring  problem  difficulty  in  GAs/EAs  are  correlation  analysis, 

polynomial decomposition, Walsh coefficients and schemata analysis.

[3]   

Evaluating a solution is extremely important when dealing with 

GAs,  because of  their  tendency to find local  extrema.  Any solution 

returned from a genetic algorithm should be recorded and written back 

into the system for further generation. It is important to change the 

parameters  of  the  GA,  such  as population  size  and  mutation  rate, 

when putting a found solution back into the GA.[4] In addition, GAs 

use  “metaheuristics”  which  essentially  means  that  a  single  GA can 

generate  different  solutions  for  separate  runs.  “This  particular 
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characteristic of metaheuristics supposes an important problem for the 

researchers  when  evaluating  the  results  and,  therefore,  when 

comparing their algorithms to other existing ones.”[11] 

Comparing similar Genetic or Evolutionary algorithms is not an 

easy task, and therefore often comes down to an empirical analysis of 

one  algorithms  performance  compared  to  another  one.  These 

performances  are  tested  over  multiple  well  known  problems.  The 

comparison  consists  of  the  quality  of  answer  found  and  the 

computational effort that is used to find the solution.

The most important part of evaluating the GWA is empirically - 

by  testing  it  against  implementations  of  some  of  the  algorithms 

defined  above.  By  comparing  convergence  on  a  range  of  difficult 

problems, it will be clear if the complexity that the GWA introduces to 

the classic GA creates a stronger Evolutionary Algorithm. 
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7. The Genetic Wavelet Algorithm

7.1 Introduction to the GWA

       This paper has broadly covered the topics of EAs, GAs and GP. 

The Genetic Wavelet Algorithm(GWA) has common characteristics with 

these  topics  and  the  foundational  information  already  presented  is 

important in order to understand the components of the GWA. The 

GWA has a population of individuals that are evaluated by a fitness 

function,  and  it  uses  recombination  operators  to  create  new 

generations  of  the  population,  therefore  it  can  be  classified  as  an 

evolutionary algorithm. However, there are more details that go into 

the GWA than classic GAs. Below is a flow chart with the basic steps of 

the GWA.
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Fig. 7.1 – Genetic Wavelet Flowchart

In relation to other EAs & GAs, the GWA is similar. It follows the 

basic steps paradigm of population, crossover, and mutation. The large 

difference comes in the way the GWA represents  individuals  in  the 

population and their chromosomes. The steps of population evaluation 

(fitness function), convergence check, population size, and the step of 

mating are all the parts that need to be implemented when solving any 

problem. Before  implementation,  one must  know the details  of  the 

GWA. The steps and specifications are explained below.
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7.2 Population Initialization

Individuals  in  the  GWA  are  represented  as  organisms.  An 

organism is made up of one or more cells. A cell has a nucleus which 

contains  one  or  more  chromosomes.  There  can  be  single-cellular 

implementations of the GWA or multi-cellular. An example of a multi-

cellular implementation would be a neural network.

The  implementation  of  the  organism  is  dependent  on  the 

problem and how the programmer wants the genes to be represented 

in  the  algorithm.  This  includes  whether  it  is  going  to  be  a  single-

cellular or a multi-cellular implementation. This organism also is where 

genes would be mapped to traits. 

Regardless of how an individual is implemented, a cell is initiated 

the same way. A cell starts off with one chromosome, and a mutability 

factor, a floating point variable between zero and ten. A cell can have 

more  chromosomes  if  mutation  occurs;  when  it  is  instantiated,  a 

random number(between zero and ten) is tested against its mutation 

factor, if the random number is less than the mutation factor, another 

chromosome is added. This continues until a random number greater 

than the mutability factor is chosen.
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The GWA represents chromosomes as pairs of chromatids. Each 

chromatid has a set of genes. There is a right chromatid and a left 

chromatid. They are joined at what is called the centromere position, 

which  dictates  where  the  gene  will  be  split  for  crossover.  Each 

chromatid is instantiated with its own mutability factor, and then one 

or  more  gene  is  added  to  the  chromatid,  depending  on  the  same 

method above for adding chromosomes to the cell. 

The  chromosome  representation  is  done  as  objects  in  lists, 

therefore an allele is not dependent on a position in a string, but on an 

index in a list. At each index of the list is a gene object. There are 

three  types  of  genes:  promoter  genes,  signal  genes, and  external 

signal genes. Each gene has a list containing zero or more receptors. 

Each gene has an output which is computed by its expression function. 

This  output  is  a  floating  point  value  and  is  essentially  its  value, 

however the output of can also be represented by a set of wavelets, 

more on this further on. Before additional detail on the types of genes, 

it is important to discuss the concept of “key.” 

The GWA uses keys, which use schemata to encode their values. 

A key is a variable length string that is evolved during the genetic 
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wavelet algorithm using x as a wild card character. A key might look 

like this: 

 

Genetic Wavelets Signal Key Example: 01x01x10 

    A  key  is  a  schema,  but  it  is  not  used  for  chromosome 

representation, instead it is used to model communications between 

cells  in  the  GWA.  Keys  are  used  to  represent  two  important 

components  of  the GWA -  receptors  and  signals.  The interaction is 

loosely modeled after hormones binding to cells. There are restrictions 

for signals binding to receptors. A signal can bind to a receptor if and 

only  if  the  receptor  matches  the  signal  on  all  non-x  points.  For 

example,  the  signal  key  "01101x10" can  bind  to  the  receptor 

"110xx10," but "0101xx1" cannot bind to the same receptor. 
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Keys do not have to be equal in length in order to bind to one 

another; a  smaller  length  receptor  would  bind  with  more  signals, 

because it  would  bind to more sites  on a  signal.  These signal  and 

receptors are an integral part of the GWA. Keys can mutate along with 

the system, however  they are not  changed on crossover. A  key is 

initialized with one or more values depending on the mutation factor of 

the gene that is initializing it. All of the genes in the GWA use keys in 

some way.

There are three types of genes; they all have a few things in 

common. First, they all have one or more receptors. Receptors have a 

receptor key. A gene starts off with at least one receptor, depending 

on  mutation.  Every  gene  also  has  an  expression  function,  as 
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mentioned  before.  The  expression  function  is  calculated  using  the 

receptors to map each one to a dimension in a wavelet. More details 

on how the expression function is calculated can be found in section 

7.3.  The  floating  point  value  output  of  the  expression  function  is 

known as the current activity of a gene – it is the value that it outputs. 

The  first  type  of  gene  is  the  signal  gene.  Signal  genes  are 

responsible for creating a signal key that may or may not bind to other 

genes'  or its own receptors. Signals genes each have a concentration 

which is calculated in the tick step. A signal gene outputs  its  signal 

local to the cell it resides in. A signal binding to a receptor will increase 

the output of that receptor by its concentration in the affected gene’s 

expression function.

An external signal gene is similar to a signal gene, but it has a 

direction that it is facing – it  can either be inward facing or outward 

facing. If it is outward facing, it outputs signals to other cells, and its 

receptors receive signals from within the cell. If  it is  inward facing, 

then it outputs signals to the local cell, and receives signals from other 

external  signal  genes  in  other  cells.  These genes  are  only  used  in 

multi-cellular implementations.
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The final type of gene that is used in the GWA is a promoter 

gene.  Promoter  genes  exist  to  promote  a  gene  that  is  a  certain 

distance away from it on the same chromatid. Promotion of a gene is 

calculated  and  affects  the  current  activity  of  a  gene.  The  current 

activity is increased by the product of its expression function output 

and how much it is being promoted. The gene that a promoter gene 

affects can change due to mutation.

The  step  of  population  initialization  starts  with  filling  the 

population  with  randomly  generated  individuals.  Each  one  of  those 

individuals is created with one or more cells, each containing one or 

more chromosomes. Each chromosome is initialized with one or more 

gene, which could be a signal, external signal, or promoter gene.

 7.3 Pre-Tick, Tick, Wavelets, and the Expression Function

The pre-tick step is the first step in the simulation phase. This is 

where  each  gene  calculates  its  new  activity  from  its  expression 

function. This is stored as its pending activity, because it is not applied 

as its expression yet. Each signal that is being expressed in the cell is 

tested to see if it binds to each receptor on the cell. If it does bind to a 

cell, then its value is changed, if not its value is zero. 
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This step in the simulation calculates and applies the promotion 

value. The current activity is set to the sum of the pending activity and 

the  product  of  the  pending  activity  and  its  gene’s  promotion. 

Promotion  does  not  affect  value  of  the  expression  function,  just 

changes its output.

The expression function is the core of the GWA, and the origin of 

the algorithm’s name. The expression function is a collection of one or 

more wavelets. A wavelet is a wave that starts out with amplitude of 

zero which increases and then goes back to zero. A common example 

of a wavelet is the wave caused by a heartbeat. A wavelet is described 

by a few different properties: amplitude, center point, phase, form, 

and distribution. When a gene is initialized, the expression function is 

created  with  one  initial  wavelet  that  is  generated  randomly.  The 

number of wavelets in the expression function is dictated by mutation. 

When a gene mutates, its expression function has a chance to add, 

remove,  or  modify  wavelets.  Below are  two  examples  of  what  the 

expression function could look like. The first is a two dimensional one 

(two receptors) with one wavelet, the second one is what it would look 

like if another random wavelet were to be added to it.
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Fig. 7.2 – Wavelet examples

The  expression  function  is  multi-dimensional;  each  dimension 

corresponds  with  a  receptor,  and  the  receptors  value.  A  receptors 

value is zero, unless a signal binds to it. Each wave in the expression 
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function  will  have  the  same  dimensional  values.  So,  in  the  above 

examples you see each wave has two dimensions – x and y. Therefore 

if these waves were expression functions, the genes that they were 

from would  only  have two receptors  on  them. Or  they  could  have 

twenty  receptors  and only  have two of  them actually  be bound to 

signals. 

The expression function can be used in two ways, through its 

floating point output, and as a single function that it can represent. 

Because the expression function is a function, it can be used as part of 

the solution.  For  instance,  by using a technique called  convolution, 

multiple wavelets can be combined into a single wavelet;  using the 

technique on the two wavelets above result in the wavelet below.

Fig. 7.3 – Wavelet transform example
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Using  a  gene’s  expression  function  as  a  way  to  map  the 

organisms’ behavior depending on different input could yield powerful 

results.  Again,  the  way the genes  affect  an organism is  up to  the 

details  of  the  problem  and  its  implementation.  Either  way,  the 

expression  function’s  method  of  adding  multiple  multi-dimensional 

wavelets  is  an  effective  way  of  building  a  diverse  function.  The 

algorithm can also be implemented by using the expression function’s 

floating point output.

The way the expression function finds the floating point output 

corresponds  with  the  multiple  wavelets.  The  floating  point  output 

comes  from the  sum of  signal  concentrations  from each  individual 

gene. The output for each wavelet collapses the wavelet; the formula 

for the collapse is below.

Where a is the amplitude of the wavelet; d is the distance from 

the center (the sum of each dimensional value’s distance from center 

on that dimension); f is the form of the wavelet; p is the phase of the 

wavelet;  r is  the  distribution  of  the  wavelet.  Let  c =  aSin(2π(d + 

p/360)). The floating point output for the wavelet is o, and o=d(c/|c|)

(|a(|c/a|f)|).
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Whether  using the floating point  output  or  the wave function 

output, the expression function is what is used to calculate the values 

of each gene depending on the signals that exist in a cell, and the 

receptors that those signals bind to. This process was modeled off of 

Gene Regulatory Networks, which is the structure by which organisms 

propagate their genes. 

7.4 Evaluating the population and Convergence Check

The fitness function can be implemented like that in any other 

GA, and it will differ greatly depending on the problem that is trying to 

be solved. Each gene on the GWA has two potential outputs that could 

be used in the fitness function as mentioned above. So it needs to be 

decided whether the implementation is going to be dealing with graphs 

or  values.  The  evaluation  step  starts  with  going  through  each 

individual, and evaluating them. Evaluation has to do with how well 

their  genes  perform  in  the  fitness  function.  These  details  are 

dependent  upon  the  problem  being  solved  by  the  algorithm.  The 

convergence  check  is  also  dependent  on  the  implementation; 

traditional checks for convergence were outlined in previous chapters.
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7.5 Mate and Mutate

Compilation is the process where two virtual organisms mate to 

produce  a  new  phenotype  belonging  to  its  child.  This  process  is 

modeled partly after Meiosis in biological organisms. First each parent 

selects one chromatid from each chromosome at random to pass on to 

the child. Next each sister chromatid from each parent, pair up at the 

centromere to reform a chromosome as a composite from each parent. 

In the end each child will have exactly half of its chromatid from each 

parent. In addition, each child will have exactly the same number of 

chromosomes as either  parent.  Through this  process of  compilation 

new children organisms can be formed from mating parents.

Of course all this assumes no mutations occur. Due to mutation it is 

possible for the chromosome count, chromatid count, and gene count 

can all differ significantly. Since mutations are usually rare populations 

should have time to normalize to ensure that such variation will be in 

the minority.

The mating step is another item that needs to be implemented, 

but it is not necessarily dependent upon the problem. The crossover 
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operator is already defined for chromosomes. What needs to be 

defined is which individuals will mate with other individuals. When this 

occurs, mutation in the genes is simulated using each chromatid’s 

mutability factor. The number of chromosomes can also be mutated 

based upon the mutation factor in each cell of the organism. 

Which  individuals  get  chosen  for  the  next  generation  of  the 

population also needs to be decided by whoever is implementing the 

algorithm. There are many methods of choosing this that have been 

described  in  previous  chapters,  any  of  which  could  possibly  be 

implemented.

7.6 Evaluating the GWA

This algorithm was recently invented; therefore it has not been 

critically compared against existing genetic algorithms. Therefore its 

performance  compared  to  other  GAs  on  multiple  different  types  of 

problems  must  be  empirically  examined.  The  important  things  to 

compare  are:  the number  of  generations  it  takes  to  converge,  the 

number of local optima found, and the evolvability of each algorithm. 

Evolvability describes the ability of  a genetic  algorithm to come up 

with complex novel  solutions to a problem; this  is  best tested in a 
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problem with no solution, possibly something based on behavior in a 

stochastic environment.

There are some parts of the GWA that could be evaluated by 

other metrics. The first of which is its use of schemata – how does the 

way the GWA use schemata relate to building blocks or the implicit 

parallelism of schemata that Holland talked about? Also how does it 

perform when the using the expression functions wavelet  output to 

solve problems that have very linear problem spaces? Are there things 

that could be modified or improved with the current design? All these 

questions are important for proving the validity, finding the strength, 

and know the place of the Genetic Wavelet Algorithm.
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8. Evaluation of the Genetic Wavelet 

Algorithm

8.1 Introduction

Both empirical  and theoretical  evidence is  needed in order to 

accurately measure the GWA’s strength as a genetic algorithm. The 

empirical  test  is  comparative  in  nature,  testing the  GWA against  a 

simple  genetic  algorithm  (sGA)  with  a  fixed-length  chromosome 

representation and floating points as genes. In order for the empirical 

data to be accurate, the algorithms need to be compared on a set of 

problems with varying complexity and difficulty to solve. 

8.2 Multiple Knapsack Problem

` The  Multiple  Knapsack  Problem(MKP)  is  an  optimization 

problem; given  n knapsacks of a certain capacity and  k items each 

item having a size and a cost, fill each knapsack to the greatest cost 
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per size by placing items in them without the sum of the sizes of the 

items in a knapsack exceeding the capacity of the knapsack.   

The MKP is in the class of problems called NP-hard[19] – which 

are the hardest of the problems that take exponential time to find the 

optimal  solution.  This  is  a  good  problem to  be  solved  by  Genetic 

Algorithms, because it can be easily encoded into a chromosome, and 

has a simple measure of success – how full the knapsacks are. The 

combinatorial  nature  of  this  problem  makes  it  difficult  to  find  an 

answer using traditional exhaustive search methods, especially as  n 

and k increase. 

Genetic  algorithms  are  not  guaranteed  to  find  an  optimal 

solution  for  every  instance  of  the  MKP.  The  comparison  will  be 

between the solutions produced by the GWA and sGA on the same 

instance of  the  MKP.  The most  fit  individuals  will  be  compared  in 

intervals of generations. The individuals that the algorithms converge 

to and at which generation that individual was initially produced will 

be compared. These metrics will show which algorithm gets a more 

accurate solution faster and the diversity between generations.

It  is  important  to  understand  what  instances  of  MKP  are 

considered harder to solve than others.  Testing on random sets of 

evenly  distributed  data  does  not  guarantee  a  hard  problem.  The 
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knapsack problem is considered to be one of the easier of the NP-hard 

problems to approximate. There is a good measure of how hard an 

instance of the problem will be.  “The problems become harder as the 

data range is increased.” [19] The data range is the distribution of the 

item values. In problems where items are represented as integers, 

the valid data range is the size of the largest knapsack. The difficulty 

of the problem can also be determined by its ratio of number of items 

and the data range, a value above 1000 is most likely going to be a 

hard problem. [19] The larger the ratio, the harder the problem. 

To compare the two algorithm implementation, the algorithms 

are tested on many MKP instances with varying degrees of hardness, 

where the item size to data range ratio is 100, 500, 1000, 2500, and 

5000; Comparing the two algorithms on many problem instances at 

those difficulty levels as well as once with a random distribution, will 

provide reliable results that can be used to conclude the effectiveness 

of the GWA on optimization problems compared to the sGA.

8.3 sGA Implementation of Multiple Knapsack Problem

Using the dANN Java AI framework, a simple genetic algorithm 

using fixed length chromosomes was implemented. The length of the 
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chromosome is the same as the number of items in the instance of 

the MKP that it is solving. The chromosomes use floating point values 

as their genes. One gene represents one item in the list.

 The fitness  function orders  the genes  by their  floating point 

values. The function iterates over the ordered list of genes. The size of 

the  item that  corresponds  with  each  gene  in  the  list  is  compared 

against the remaining space of the current knapsack. If there is not 

enough room to place the item in the knapsack, the function proceeds 

to the next knapsack. If there are no more knapsacks, the function 

ends. The fitness function calculates the weight of the knapsacks by 

taking the sum of the product each item's size and cost/weight. The 

cost/weight corresponds to item density, and will always be a double 

value between 0 and 1(exclusive). The weight of the knapsacks is then 

divided by the total space of the knapsack. This is also a double value 

between 0 and 1(exclusive), that represents the weight per size of the 

knapsack.  This  is  a  good  measurement  of  fitness,  because  it 

represents the value that needs to be optimized in the MKP.
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8.4 GWA Implementation of Multiple Knapsack Problem

The  current  version  of  the  GWA  in  the  dANN  library  has 

everything needed for initializing chromosomes and GWA individuals. 

The population, individuals, mating, and the fitness function were all 

implemented  specifically  for  the  MKP.  The  GWA,  by  default, 

instantiates individuals with one chromosome with one gene on that 

chromosome. There is a chance that a mutation event will occur and 

there will be more genes or chromosomes added to that individual. In 

order to fairly compare the GWA and sGA's performances, the fitness 

functions  should  be  the  same.  Because  the  sGA's  fitness  function 

required a fixed length chromosome, and the GWA was implemented 

to use a fixed length chromosome as well. This is to ensure that there 

is not an advantage given to either algorithm in their respective fitness 

functions.

The implementation of the GWA for MKP is constrained. There is 

only one chromosome is allowed and it is fixed at the number of items 

in the problem instance. The individuals are single cellular. The goal of 

this comparison was to test whether or not the underlying mechanisms 

involved with gene values are superior  to the classic  sGA.  No new 

signals will  be introduced to an individual  after  it  is  initialized.  The 
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problem has  been constrained as such in order  to ensure  that  the 

results are such only due to that mechanism. 

Mating was implemented as described in the section on mating 

from the previous chapter. A chromatid was randomly selected from 

the each of  the  two parents,  combined,  crossed over  and possibly 

mutated. After that the child is added to the population and tested. 

There is also a chance that existing members of the population will 

mutate on any given generation iteration. 

8.5 Results and Comparison

A  program  was  written  called  Genetic  Algorithm  Comparator 

(GAC) to test the two genetic  algorithms side by side on the same 

problem instance. The problem was initiated with a hardness factor 

described  in  section 8.2,  and a random MKP of  that  hardness  was 

generated  and  tested.  Both  algorithms  were  run  on  many  sets  of 

problems at different  difficulty levels.  Each algorithm was initialized 

with a starting population of 50 individuals, a die off rate of 40%, and 

a mutability of 20%. After the algorithms solve the same instance of 

the  MKP,  their  fitness  functions  are  compared  and  the  one  with  a 

higher  fitness  value  is  considered  to  be  more  accurate.  The  ideal 
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solution is  not calculated,  the algorithms’  performances are instead 

compared to each other. The results are below; each difficulty has two 

bars, the first one represents the number of problems solved from that 

particular  hardness  and  each  subset  represents  the  number  of 

problems which one of the algorithms has a more accurate solution or 

if  their  accuracy  is  equivalent.  The  second  bar  corresponds  to  the 

problems which the algorithms were equally accurate, and is split up 

into  sections  denoting  the  number  of  ties  in  which  the  particular 

algorithm found the solution in less generations. The section labeled 

TRUETIE refers to finding the solution in the same generation.

Fig 8.1 GWA sGA Comparison Results
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The results of comparison are clear, the sGA out performs the 

GWA on all of the different problem difficulties in terms of getting a 

more accurate solution. The problem instances in which each algorithm 

finds the same solution are counted as a tie. The ties are attributed to 

the  algorithm  that  found  the  solution  in  the  least  amount  of 

generations. The graph below shows the percentage of problems that 

were more accurately solved by each algorithm.

Fig. 8.2 – Graph representing percentage of problems that each 

algorithm provided a superior solution for.

The  GWA  was  less  accurate  than  the  sGA  on  52%  of  the 

problems tested. The sGA was less accurate than the GWA on 32% of 

the problems tested. The two algorithms tied on 16% of the problems. 
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A tie  means  the  answer’s  accuracy  is  the  same,  but  a  tie  can  be 

broken by the number of generations that were needed to create that 

individual. Below is a graph showing the percentages of ties that were 

broken by the GWA or  the sGA. If  the two algorithms created  the 

individual on the same generation, then it was considered a true tie. If 

the ties that were broken were attributed to each algorithm’s accuracy, 

then the sGA would have been more accurate 54.8% of the time and 

GWA would have been more accurate 42.72% of the time.

Fig 8.3 – Graph Showing Percentage of Resolvment of Ties

The sGA won 18% of the ties encountered in the data sets. The 

GWA won 67% of its ties, and 16% were true ties. This data suggests 

that the GWA converges more quickly upon solutions than the sGA. If 
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the GWA converges faster, then why is it not as accurate? The graph 

below details  the average offset  of  fitness  values between the two 

algorithms over all the problems.

Fig. 8.4 – Graph showing the average difference between the sGA and 

GWA's winner fitness when each algorithm has a more accurate 

solution than the other.

67

100 500 1000 2500 5000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

%dif f  SGA
%dif f  GWA

hardness

Av
er

ag
e 

%
 s

up
er

io
rit

y



The difference in fittest individual fitness values shows how close 

a winning individual's fitness was to a losing individual's fitness. For 

the GWA, the average percent superiority for all levels of hardness is 

less than 2%. This means when the GWA generates a more accurate 

solution, it is on average less than 2% higher than the sGA's fitness. 

On the other hand, when the GWA loses it loses badly. The drastic 

difference in average fitness begs the question – why is the GWA being 

outperformed so badly when it loses? 

The large  gap means that  the  GWA is  getting stuck on local 

optima. The restricted version of the GWA may be too constrained. 

The  fixed  length  chromosome had  a  negative  effect  on  the  GWA's 

ability  to  diversify.  In  a  non-constrained  implementation  the 

chromosomes would be variable length; when a mutation occurred; 

genes might be mutated, added, or removed from the chromosome. In 

the fixed length implementation,  genes are not added or removed, 

only possibly mutated. In a population that is converging towards a 

local optimum, the fitness values of the individuals and their genes will 

be  very  similar.  Without  the  ability  to  introduce  new  signals  or 

receptors to the gene pool the population has difficulty staying diverse. 

Below is a chart demonstrating the average generation in which the 

solution was found for each difficulty set.
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Fig 8.5 – Chart demonstrating the average generation in which the 

final solution was found for the different hardness levels of the MKP.

Despite the fact that the sGA outperformed the GWA on many 

problem instances, some strengths of the GWA were apparent.  The 

GWA converges more quickly upon solutions compared to the sGA. In 

the above graph, the average generation to find the solution in for the 

GWA was approximately eleven. The average generation for the sGA 

was almost thirty. Even when producing less accurate solutions, the 

GWA converges upon its answer more quickly. The GWA won 67% of 

ties,  meaning if  the sGA and GWA produced the same solution, on 

average the GWA found the solution more quickly than the sGA. In 

addition,  the small  average percentage of  superiority  of  the GWA's 
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solutions shows that the sGA was very close to GWA's solution. The 

fact that the GWA was only slightly more accurate also reinforces its 

strength in converging on a solution. For fitness values that are very 

close, the solutions that the individuals represent are similar. The GWA 

was able to converge towards a more specific solution than the sGA, 

exemplifying its ability to find a more specific answer than the sGA 

without the sGA being stuck on a local optimum.

8.6 Conclusion

The  constrained  nature  of  this  implementation  of  the  GWA, 

specifically  the  fixed  length  chromosome,  causes  the  signals  in  an 

individual  to  be  less  diverse.  The  lack  of  diversity  causes  this 

implementation of the GWA to be susceptible to converging upon local 

optima.  When  not  tricked  by  local  optima,  the  GWA  performance 

proved to be quick and reasonably accurate. The problem constraints 

existed to test the random valued genes found in the sGA against the 

weak links between genes caused by signal and receptor interaction 

found in the GWA. The mechanisms dictating gene values in the GWA 

are  a  valid  and powerful  technology unique to  the  field  of  Genetic 

Algorithms.  The  code  for  this  implementation  is  freely  available  at 

http://github.com/koryk/GAC/.
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